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Abstract—As the number of Internet of Things (IoT) devices 
and applications increases, the capacity of the IoT access networks 
is considerably stressed. This can create significant performance 
bottlenecks in various layers of an end-to-end communication 
path, including the scheduling of the spectrum, the resource 
requirements for processing the IoT data at the Edge and/or 
Cloud, and the attainable delay for critical emergency scenarios. 
Thus, it is required to classify or predict the time varying traffic 
characteristics of the IoT devices. However, this classification 
remains at large an open challenge. Most of the existing solutions 
are based on machine learning techniques, which nonetheless 
present high computational cost while non considering the fine-
grained flow characteristics. To this end, in this paper we design a 
two-stage classification framework that utilizes both the network 
and statistical features to characterize the IoT devices in the 
context of a smart city. We firstly perform the data cleaning and 
preprocessing of the data and then analyze the dataset to extract 
the network and statistical features set for different types of IoT 
devices. The evaluation results show that the proposed 
classification can achieve 99% accuracy as compared to other 
techniques with Mathews Correlation Coefficient of 0.96.  

Keywords— Internet-of-Things, machine learning, network 
features, statistical features, traffic classification. 

I. INTRODUCTION  
Internet of Things (IoT) allows tens of billion devices to be 

connected and communicated over the Internet. Nonetheless, 
the rapid increase of IoT devices has also resulted in a colossal 
increase of the IoT data generated. Specifically, the total data 
has quadrupled in just five years from 145 ZB in 2015 to 600 
ZB in 2020 [1]. IoT not only enables new applications, but at 
the same time it introduces new devices as well. These devices 
are usually of limited capabilities and cannot meet the time and 
performance constraints for mission critical scenarios. Thus, the 
computational burden is usually offloaded to the Edge and/or 
Cloud infrastructures. However, it is difficult to pre-allocate the 
resources during this computational offloading since the total 
amount of requests/data may present a random generation 
behavior. 

At the same time when there is a large number of IoT device 

generating data, the total communication delay may be affected 
due to the constrained nature of the IoT access networks. Thus, 
it is required to predict the time varying characteristics of the 
devices’ traffic, in order to guarantee a specific level of Quality 
of Service (QoS). Therefore, by classifying IoT devices into 
different categories (i.e. hubs, cameras, air quality sensors etc.) 
it will allow to better predict the traffic generated and the 
services’ requirements. Furthermore, it will better schedule the 
available spectrum and computational and communication 
resources. 

Existing IoT traffic classification techniques either utilize 
the aggregated traffic models [2-4], device fingerprinting 
technique [5-8], or the state-of-art machine learning techniques 
[9-12]. However, the above approaches present a number of 
limitations in terms of fine-grained device characterization, 
high cost data extraction processing, and scalability. To this 
end, in this paper, we proposed a two-stage machine learning 
approach using two feature sets: i) a statistical feature set 
including packet inter-arrival time, burstiness rate, traffic flow 
rate, and ii) a fine-grained network feature set including IP 
addresses, IP protocol type, port numbers, MAC addresses, 
Time-to-Live (TTL) and packet size. The reason of using a two-
stage classification approach with different features at each 
stage is to avoid a high dimensionality and overfitting of 
training data. 

Specifically, the contributions of this study are threefold: (i) 
in order to classify the IoT traffic and devices, we introduced 
two traffic flow feature sets, namely, statistical feature set and 
network level feature set. This approach provides fine grained 
characterization of traffic flow with less computational 
complexity for IoT devices classification, which is a key 
building block of our method; (ii) we proposed a relevance 
weighting that is assigned to each nominal (representing the 
qualitative data with numeric codes)  features during the data 
preprocessing; (ii) a multistage machine learning based 
classification framework is presented with 99% accuracy in 
order to provide a scalable classification. To determine IoT 
device classification, we have computed the classes for certain 
nominal and multivalued attributes at stage 0 using logistic 
regression and perform the final classification for numeric and 
single valued features at stage 1 using Gradient boosting 
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algorithm along with the suitable adjustment of hyper-
parameters i.e., learning rate and n-estimator. 

The rest of the paper is structured as follows: In Section II a 
brief review of the related work is presented. Section III 
provides the network model and necessary preliminaries for 
comprehending the classification problem. Section IV 
elucidates the proposed classification model. Section V 
explains our proposed model algorithmic form and its 
asymptotic analysis. Section VI provides the performance 
evaluation results. Finally, Section VII concludes the paper. 

II. RELATED WORK 
For an IoT device classification, a significant emphasis has 

been put into aggregated traffic models, fingerprinting, and 
machine learning solutions. Regarding aggregated traffic 
models, Laner et al. [2] proposed a Coupled Markov Modulated 
Poisson Processes (CMMPP) framework to capture the traffic 
behavior of a single machine-type communication along with 
the collective behavior of tens of thousands of M2M devices. In 
[3] a classification strategy is designed for a fleet management 
use case incorporating three different classes of M2M traffic 
states, namely periodic update, event-driven, and payload 
exchange. The authors in [4] proposed a traffic model that 
estimates M2M traffic volume generated in a wireless sensor 
network-enabled connected home. However, the above works 
do not consider the fine-grained characterization of IoT traffic 
and the complexity of such methods grows linearly with an 
increase in the number of M2M devices. Furthermore, common 
communication patterns were identified that can be attributed to 
any sensing device if using a specific use case (limitation 1). 

Thus, there is a great interest of how to also classify and 
identify the type of devices used in each IoT application, an 
approach called fingerprinting. For example, “IoT Sentinel” [5] 
is a classification system that can recognize and identify the IoT 
devices immediately after they are connected to the network 
using a single attribute vector with 276 network features. The 
“IoT Sentinel” can be further improved by extracting an 
additional network features such as payload entropy, TCP 
payload length, and TCP window size [6]. Similarly, in [7] 
almost 300 network attributes are used from each TCP traffic 
session for a device classification using majority voting for 
every 20 consecutive sessions. In [8], the traffic patterns of 
encrypted network flows are used to reveal the existence of a 
specific device inside a home network. However, obtaining 
such a great number of features require specialized hardware 
accelerators, thus resulting in high computational cost, longer 
classification duration and limited scalability due to the need of 
a deep packet inspection functionality (limitation 2). 

Some related works also employed machine learning in 
order to perform traffic and device classification. Lippmann et 
al. [9] compared the K-nearest neighbor (KNN), Support Vector 
Machine (SVM), Decision Tree (DT) and Multilayer 
Perceptron (MLP), using the packet header information with the 
conclusion that KNN and DT results in better performance. 
Lopez-Martin et al. [10] classified the network traffic using the 
multi-class neural network, which is proven to be effective in 

complex data structures [10]. The authors in [11] proposed an 
individual binary classification model for each device class in 
order to eliminate the complexity issue of multi-class 
classification. Sivanathan et al. [12] utilized the statistical 
attributes, signaling patterns and cipher suites along with 
machine learning for IoT device classification. Nonetheless, 
these approaches are affected by the high data dimensionality, 
they are sensitive to the hyper-parameter tuning and they 
require a large number of training data. Moreover, the main 
constraint of the multi-class classification is scalability as the 
high number of classes makes the classifier complex and 
updating requires full retraining (limitation 3). While all the 
above works make an important contribution, each of them has 
several shortcomings. Our work aims at providing a 
classification framework to address the above cited limitations 
in such a way that in order: (i) to overcome the limitation 1, we 
incorporate the fine-grained features from the network layer, 
transport layer, and data link layer;  (ii) to address the high 
computational costs of complex features, we propose the 
statistical feature set that can be calculated using a probability 
distribution; (iii) to address the limitation 3, we propose a two-
stage classification framework. We also assign some relevance 
weighting to each nominal feature and distribute the features 
across these two stages along with an appropriate 
hyperparameters. 

III. PROBLEM DEFINITION AND SYSTEM MODEL 

A. Multiclass Traffic Classification Problem 
An IoT Traffic Classification problem can be formally 

defined as the task of estimating the class label ���to the input 
vector �, where � belongs to a subset of a feature set �, �� �
��� 	 �� and �� � � �
� � � ��
� ��� � � � � ��� where �� represents the 
���  possible class. This task is accomplished using a 
classification rule or function �������� � �
  that is able to 
predict the label of new patterns. In a supervised setting, a 
training set �  of �  points is given, from which ���� will be 
adjusted, �� � � ����� ���� �� � ���� � � � ��. 
B. Smart City Use Case 

Assuming a smart city domain, we find the set of classes 

� � � ��
� ��� � � � � ���, where each class represent a category of 
IoT devices according to the type of application they are used. 
For example, there are 6 classes, where �
  represents cameras, 
��  denotes switches and triggers, �� is healthcare devices, ��  

denotes air quality sensors, �  represents the light bulbs, and �! 
represents hubs class in the IoT smart city. In this case, the 
feature set � represents the distinctive properties of the traffic 
flow that we want to classify according to the class label �� . 

C. Feature Set 
In this work, we consider two possible feature sets: i) a 

network flow feature set and ii) a statistical feature set. 

Definition 1. (Network Flow Feature Set): A Network Flow 
feature set, ��, is a set consisting of features from network, 
transport, and data link layer as: ��� � � ��
� ��� "� � �#� where 
�
 represents the source IP address, ��� is the destination IP 
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address, ���represents the IP protocol used, ���shows the source 
port number, � �represents the destination port number � �!  is 
TTL information� �$�denotes the source Ethernet address,  and 
�#  represents the destination Ethernet address.  

Definition 2. (Statistical Feature Set): A Statistical feature set, 
%�, is a set consisting of features that are extracted from the 
network features using an appropriate probability distributions 
and is represented as: %� � �&
� &�� &�� &�� where &
 determines 
the inter-arrival time, &�  denotes the average packet size, &�  is 
the traffic rate, and &�  represents the traffic burstiness rate. 

IV. PROPOSED CLASSIFICATION METHOD 

A. Dataset Extraction 
The publicly available data set [13] is used, collected over 

one month consisting of up to 21 IoT devices. Each data file 
consists of more than 500,000 records. 

B. Preprocessing 
After dataset filtering (i.e., removal of non-meaningful 

packets such as ping, etc.), we noted that some of the features 
such as “set of port numbers”, “set of IP protocols” and “set of 
Ethernet addresses” are nominal and multivalued (having more 
than one value with a single data instance). As machine learning 
classifiers cannot deal with such data, we converted these 
features into a numerical form using a two-step procedure. 
Firstly, we perform the data cleaning by passing the nominal 
vectors to the Bag-of-Word (BoW) model [14]. Secondly, as the 
BoW assigns the same importance to each vector word, we have 
proposed the relevance weighting to assign a prioritized 
importance to each word within each vector. These relevance 
weights against each feature vector are passed to the Stage 0 
classifier and is given by (1): 

 '()(*+,�(�-(�./0 � 1�2�3 4 *�2�3 (1) 

where 1�2�3 denotes the word frequency of words within a 
vector and *�2�3 represents the total vector frequency. Herein, 
the vectors consist of the “port numbers vector”, “IP protocols 
vector”, and “Ethernet addresses vector”. The word frequency 
wfw,v of a word w in vector v is defined as the number of times 
that w occurs in v and is given using (2): 

 1�2�3 � �56789:��;<�;==6:95=9�>?�@�A>BC�DE�@�FGHI>B�
56789:�;<�2;:JK��5���L��39=�;:  (2) 

Because frequent words are less informative than rare 
words, the vector frequency, *�2�3 is given as of (3): 

 *�2�3 � )M. �56789:�;<�39=�;:K�
56789:�;<�39=�;:K�=;5�L�5�5N�2;:J�2 (3) 

C. Feature Description 
As presented above we considered both the statistical and 

network features. Network features are typical network 
attributes found in packet headers and thus self-explanatory. 

However, we provide a better insight into the statistical features 
as below: 

1) Interarrival time: The packet interarrival time is the 
amount of time that elapses between a packet reception and the 
arrival of the one following it. After analyzing the dataset, we 
extracted the time between the successive incoming traffic 
packets which follows an exponential distribution. The 
Probability Density Function (PDF) of an exponential inter-
arrival time distribution is given using (4) with O taken as 1 
because at each time unit, one packet arrives. Furthermore, as O 
will get larger than 0, the event i.e., packet arrival tends to 
happen more quickly since O is a rate parameter [15]. The � in 
(4) representing the time as a continuous variable. 

 ���PO� � QO(RST���������������� U V
V������������������������ W V  (4) 

2) Traffic Flow Rate: It represents the amount of an IoT 
traffic packets moving across a network at a given point of time. 

3) Burstiness Rate: It is the rate of consecutive packets 
whose inter- packet arrival time is shorter than the inter-arrival 
time arriving before or after of these packets. 

D. Proposed Classification Method 
The proposed classification method, as shown in Fig. 1, 

consists of two stages. We follow this approach because of two 
reasons: firstly, in this way features are divided across two 
stages, thus high dimensional data is easily classified and 
secondly both classifiers at each stage use a different subset of 
features from the overall features (network + statistical), and 
hyperparameters are easily adjusted for each classifier thus 
avoiding overfitting. The BOW and feature relevance weights 
are fed into the stage 0 which is specially applied for the 
nominal and multi-valued features. The output of stage 0 
classifier is the tentative classes, passed to the stage 1 classifier 
along with other numeric features providing the final output of 
classification. 

 

Fig. 1. Architecture of Proposed Classification Method 

1) Stage 0 Classifier: The Logistic Regression acts as our 
stage 0 classifier and takes as input the “set of port numbers”, 
“set of IP protocols” and “set of Ethernet addresses” as BOW 
vectors along with the weights for the training. The reason that 
we have selected this classifier is because it has been proven to 
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performed well for very large data sets [16], as in case of a smart 
city environment. Logistic regression investigates the 
association among the independent and the dependent variables 
of the problem. In our scenario, the port numbers, IP protocols 
and Ethernet addresses vectors are the independent variables 
and the device categories (e.g., hubs, cameras, etc.) are the 
dependent variables. The goal is to estimate the probability X 
for a combination of the independent variables using the 
following logit function:   

 )M.�0�X� � YZ� [

R[� (5) 

where ),  is the natural logarithm and X  denotes the 
probability of an independent variable. The antilog of (5) allows 
us to find the estimated regression equation given by (6):  

)M.�0�X� � YZ�� [

R[�� � \] ^ \
 _ �
 ^ \� _ �� ^ \� _ �� `

�X � ���9abcadedcafefcageg�
�
h�9abcadedcafefcageg��       (6) 

where \]  is an intercept; \
 , \�  and \�are the regression 
coefficients, while �
  denotes the first independent variable 
(i.e., port number), �� is the second independent variable (i.e., 
IP protocol), and �� is the third (i.e., Ethernet address). In order 
to calculate \], \
� \�, \�, we employed the Gradient Descent 
method [17]. The general form of (6) is given as: 

 X�i�P�
� ��� ��� � 


h9j�abcadedcafefcageg� (7) 

where i�  represents dependent variable, i.e., the ���� IoT 
device class, which is predicted based on �
, ��, and ��.  

After calculating the regression coefficients, the testing 
components come into effect, where the classifier uses the 
regression coefficients and computes the estimated regression 
for each testing instance using (7). Finally, the prediction 
effectuated by the Stage 0 classifier is based on the following 
equation: 

 Q i� � ���������������X�i�P�
� ��� ��� U V�k
����i� � V��������������X�i�P�
� ��� ��� W V�k����� (8) 

where i� =1 means that data with features �
� ��  and �� 
belong to ��� class and i�=0 means that data with features �
� �� 
and �� is not belong to a particular class. 

2) Stage 1 Classifier: In Stage 1 classifier, a gradient 
boosting algorithm [17] takes all quantitative features such as 
packet interarrival time, traffic flow rates, burstiness rate, 
packet length, IP source address, IP destination address and 
TTL along with the output from the stage 0 classifier. The input 
of gradient boosting algorithm also includes the training set 
����� i����l
5 , a differentiable loss function m�i� �����, and the 
number of iterations n. The differentiable loss function is the 
log of data likelihood given the prediction and is calculated as 
follows: 

 m � oMp&(q*(r _ Yst�Mrr&� ^ Yst��� ^ (u>v��;JJK�� (9) 

The gradient boosting firstly finds the optimal initial 
prediction using (10) and then the pseudo-residuals for m = 1 
to M using (11):  

 �]��� � wxty�, z m�i�� {�5�l
  (10) 

                          q�7 � o|}~������T���}��T�� ���T�l��jdT                  (11) 

where {7 is computed using (12) and the model is updated 
according to (13)  

 {7 � wxt��Zz m�i�� �7R
���� ^ {�T�����  (12) 

where m  is the loss function, i�  refers to the ���  observed 
value,  �7R
����  is the prediction function of ��  and is 
calculated using (13), +q.y�,  signifies that we need to find 
)M.�Mrr&�  that minimize the summation, and {  denotes the 
)M.�Mrr&� value. 

 �7��� � �7R
��� ^ {/7��� (13) 

where/7���  represents the additional model (regression 
tree) for the prediction function. Lastly, using the output of 
�����, the classification of the testing data is done into the 
classes as discussed above. 

V. CLASSIFICATION ALGORITHM 

A. Algorithm Description 
The proposed algorithm is depicted in Algorithm 1 and 

consists of three procedures, namely, PREP, LOGREG and 
GBOOST. The PREP procedure firstly generates the BoW 
representations using the function .(,(q+0(���-�� . Then, 
the relevant weights are calculated by employing 1Mqr��q(��� 
and *(�0Mq��q(��� functions, which takes BoW as an input. 
Next the interarrival time, traffic rate and burstiness rates are 
calculated using the �,0(q+qq�*+)�� function, taking as as input 
the time 0 , 0q+�����q+0(��  and p�q&0�,(&&�� . In the 
LOGREG procedure, the input labels � and output labels i are 
splits into training and testing data using the function, &X)�0��. 
Then the mM.�&0��'(.q(&&�M,�� generates and fit the model 
using the ��0��  function. The prediction is done using the 
Xq(r��0�� function which contains the ��K�  as testing dataset. 
The GBOOST procedure generates the classification results. 
Specifically, the ��MM&0�� function firstly generates and fit the 
model with ��0�� and then calls the Xq(r��0�� function. 

 
Algorithm 1: Classification Algorithm 

PREP (�� ���� ��� �� ����� ��������������) 

// 0 is time; 1�, is the TCP window size ; �' is the burstiness 
rate; � is the type of IP protocol; Xq0K and  Xq0J are the source 
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and destination port numbers; n�
K and n�
J are the source 
and destination MAC addresses. 

1. ��-
 � ��.(,(q+0(���-�Xq0K� Xq0J� 
2. ��-� � ��.(,(q+0(����-��� 
3. ��-� � ��.(,(q+0(���-�n�
K�n�
J� 
4. 1� � 1Mqr��q(����-
� ��-�� ��-�� 
5. *� � *(�0Mq��q(����-
� ��-�� ��-�� 
6. q()29�N�� � 1� 4 *� 

7. ",0 � �,0(q+qq�*+)�0� 
8.  : � 0q+�����q+0(�1�,� 
9. �: � p�q&0�,(&&��'� 
Output: �¡¢£��¡¢¤��¡¢¥� �¦§�¦�¨©�� ª��� «�� �� 

LOGREG(�¡¢£��¡¢¤��¡¢¥� �¦§�¦�¨©�� �¦¬�­¦�) 

//devices represents the class label  

10. set � � r+0+&(0���-
� ��-�� ��-�� q()29�N���   
11. set     i � r+0+&(0�r(*��(&�   
12. s¦����:� ��K�� i�:� i�K� � &X)�0��� i� 0(&0K�®9 � V�¯� 
13. set   yMr() � mM.�&0��'(.q(&&�M,�y+���0(q � °VVV�    
14. set ��0 � yMr()� ��0���:� i�:�       
15. set i[:9J � yMr()� Xq(r��0���K��  
output:  i[:9J                                                         ± %0+.(�V� 
GBOOST(²��¦�� ª��� ª��� ««³� §� ª��� «�� ��� �¦¬�­¦�) 

// i[:9J  is the output of Stage 0 classifier; "�K and "�J  are the 
source and destination IP addresses;   m is the packet time to 
live; ) is the packet length; ",0 is the interarrival time;  : is the 
traffic flow rate; �:  is the burstiness rate set. 

16. set     � � r+0+&(0�i[:9J� "�K� "�J�   m� )� ",0�  :� �:�   
17. set     i � r+0+&(0�r(*��(&�   
18. s¦�������:� ��K�� i�:� i�K� � &X)�0��� i� 0(&0K�®9 � V�¯� 
19. set����y � ��MM&0�,9K��7L�;:K � kVVV� m'� � V���    
20. set    ��0 � y� ��0���:� i�:� 
21. set    i[:9J � y� Xq(r��0���K��  
Output����i[:9J� �% � r(*��(&                              ± %0+.(�� 

B. Computational Complexity 
Proposition 1. The computational complexity of PREP 
procedure is ��,�. 
Proof. The PREP procedure running time depends on the 
number of vectors, represented as , . The lines 1-3 takes a 
constant time as it split the vectors into words, thus ����. The 
lines 4-5 and 7-9 are an assignment statements and require time 

of ����. For the q()29�N�� statement (line 6) the complexity is 
���� _ ��,� � ��,�. Thus, the overall complexity of PREP 
procedure is linear i.e., ���� ^ ���� ^ ��,� � ��,�. 
Proposition 2. The computational complexity of LOGREG 
procedure is ��,�. 
Proof. The lines 10-12 are simple assignment statements (i.e., 
O(1)), while the training time (lines 13-14) of LOGREG is 
��, _ r� where , is the number of training examples and r is 
the number of data features used for the classifier training. 
However, the testing time taken by the line 15 is ��,�. Thus, 
the LOGREG takes ����+���, _ r� ^ ��,� � ��,� time and 
is suitable for low latency applications. 
Proposition 3. The computational complexity of GBOOST 
procedure is ��,r´�. 
Proof.  In the GBOOST procedure, lines 16-18 consists of 
simple assignments i.e., ����. The training lines 19-20 takes 
��,r´� time where, , is the number of training instances, r 
denotes the number of features for classification and ´ is the 
number of trees generated during training. However, the testing 
phase (line 21) requires ��r´� time. Thus, the complexity is: 
���� ^ ���,r´� ^ ��r´� � ��r´�. 

The overall complexity of the proposed classification is: 
��,� ^ ��,� ^ ��,r´� � ��,� . Thus, it is a linear time 
classification. 

VI. PERFORMANCE EVALUATION 

A. Experiment Setup 
A total of 101922 labeled instances were collected from the 

traffic traces of 21 devices provided by [12]. The classification 
is being implemented in Python (version 3.8.2), while we split 
the dataset instances into two groups of 70% training instances 
and 30% testing instances. For the performance evaluation of 
the classification, we have considered the following metrics: 
precision (ability of a classifier not to label an instance positive 
that is actually negative), recall (finding all positive instances, 
also called true positive rate), F1-score (harmonic mean of 
precision and recall), accuracy (proportion of correctly 
classified instances), and confusion matrix (also called error 
matrix). The values of all these metrics are calculated between 
[0,1] with 1 indicating the best and 0 the worst performance. 
The Matthews Correlation Coefficient (MCC) is also used to 
measure the classification quality for different class sizes and 
ranges between [-1,1] where 1 is perfect prediction, 0 is random 
prediction and -1 indicates total disagreement between 
prediction and actual value. The comparison is done with [12] 
and other well-known machine learning algorithms i.e., Support 
Vector Machine (SVM) and Decision Trees for both stages. 

B. Results and Discussion 
1) Performance of stage 0: Fig. 2 illustrates the 

performance of logistic regression compared to the naïve Bayes 
(used in the stage 0 of [12]), SVM and decision tree using 
precision, recall and F1-score. Regarding precision, it is 
observed that the decision tree performs best as 70% of the 
results are positively predicted, followed by the logistic 
regression with 69% and SVM with 67%. However, naïve 
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bayes performed poorly, i.e., 0.6 which means 40% results were 
wrongly classified as positive. This is because for naïve bayes, 
the precision values of Belkin Switch, HP printer, Netatmo 
Welcome, PIX-STAR, Samsung tab, TP link camera were zero, 
while it shows a precision value of less than 0.17 for many other 
devices.  

 
Fig. 2. Metrics Comparison for Stage 0 Classification 

When looking into the recall metric, we see that logistic 
regression performs well as compared to other algorithms, i.e., 
0.65. However, once again naïve bayes gives the least average 
recall of all devices as 0.61. The reason for this behavior is that 
out of 21 classes, instances of 8 classes were 100% incorrectly 
classified.  Furthermore, we found that the logistic regression 
has high F1-score, i.e., 0.67 followed by decision tree (0.66), 
SVM (0.64) and naïve bayes (0.6). The dotted lines in Fig. 2 
shows the algorithmic polynomial trendlines indicating the 
fluctuation of evaluation metrics with their R-squared values. 
The trendlines of all metrics give an order 3 trend (i.e., one 
downward hill and one upward hill) showing polynomial 
relation among algorithms and their metrics. It is worth noticing 
that the highest R-squared value among all three trendlines is 
0.72 for precision which means precision accounts for 72% of 
variance.  

2) Performance of Stage 1: Fig. 3 showed the comparison 
of the stage 1 algorithm i.e., gradient boosting with the random 
forest (used in stage 1 of [12]), SVM and decision tree. The 
gradient boosting performed well, as the precision is 0.9, 
followed by the 100% correct classification (recall) and 94% of 
F1 score. The SVM also gives reasonable results followed by 
the decision tree. However, random forest indicates the worst 
performance with 0.78 for recall, 0.8 for precision and 0.77 for 
F1-score because 3335 training instances of Belkin switch 
class, 374 instances of HP printer class, 262 instances of the TP  

 

 
Fig. 3. Metrics Comparison for Stage 1 Classification 

link camera class and 31 iPhone class instances were incorrectly 
classified.  

In fig. 4, the gradient boosting gives the highest accuracy, 
i.e., 99% with a significant high MCC value of 0.965671. The 
accuracy for SVM is 91% with 0.88 MCC and accuracy for 
decision tree is 89% with 0.79 MCC. However, the random 
forest gives the worst performance with an accuracy of 0.77 and 
a MCC of 0.72. Further analysis showed that there are 5 classes 
out of 21 with incorrectly classified for the random forest and 
as accuracy is the ratio of numbers, we corroborate the poor 
performance of random forest as shown in Fig. 4. 
 

 

Fig. 4. Accuracy vs. MCC for various classification algorithms 

Next, we have plotted the performance metrics per device 
for Stage 1 in Fig. 5. Some devices such as dropCam, iPhone, 
netatmo weather, smartcam and TP link camera presents the 
highest performance, i.e., recall=1; precision=1 and F1-
score=1, all aggregated to 3. However, for TP link plug the 
aggregated value is 1.31 because the F1 score is 0.2, the recall 
is 0.11 but the precision is significantly high, i.e., 100%. For the 
smart scale, the aggregated value is 0.94 as precision is 
reasonably good, i.e., 0.67 but recall and F1 score are relatively 
low i.e., 0.17 and 0.1.  

 
Fig. 5. Performance comparison per category for Stage 1 

3) Overall Performance: In Fig. 6, the row entries of a 
confusion matrix depicts the actual values and the column 
entries depicts the predicted values for 21 classes. All the 
diagonal entries correspond to correct classification whereas 
entries above diagonal are all Type I error (also called False 
Positive Rate (FPR)) and entries below are Type II error (also 
called False Negative Rate (FNR)). The goal is to minimize the 
Type I and Type II errors close or equal to zero. At the main 
diagonal there are three exception cases: (i) for the nest alarm 
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the worst classification is seen, i.e., zero since all 19 instances 
of the particular device were classified as laptop, thus depicting 
100% FNR; (ii) for the withings scale the classification value is 
0.29 with 71% FNR because it was misclassified as Samsung 
tab, and (iii) for the HP printer, we noticed the 39% of 
misclassification as smart phone (Type II error), and 5% of 
misclassification as TP Link Router (Type I error), while only 
56% instances were correctly classified as HP printer. This is 
because of the following reasons: (i) there are 21358 instances 
of laptop compared to 19 nest alarm instances; 2492 Samsung 
tab instances compared to 20 instances of withings scale; 902 
smart phone instances and 42389 TP Link Router instances 
compared to 362 HP printer instances. Thus, the value of �7��� 
(represented in Eq. 13) for laptops, Samsung tab, smart phone 
and TP link router is high as compared to nest alarm, withings 
scale and HP printer; (ii) the traffic rate values (feature &�) were 
very low for nest alarm and withings scale as compared to the 
laptop and Samsung tab. Finally, there are 38% server-side 
ports which are empty for HP printer instances as compared to 
the smart phone and TP link router, because the HP printer 
communicates with local devices instead of internet end points. 

 

Fig. 6. Confusion Matrix of IoT devices classification 

VII. CONCLUSION 
In this paper, we have presented a two-stage classification 

technique that utilizes the network and statistical features to 
perform the IoT device and traffic classification in the context 
of a smart city. After data preprocessing, the stage 0 classifier 
employs a multiclass logistic regression algorithm to classify 
traffic using the nominal and multivalued attributes as port 
numbers, IP protocols and MAC addresses. The result of stage 
0 is then fed into the stage 1 classifier, which uses a gradient 
boosting algorithm that takes a second subset of features 
consisting of IP addresses, TTL, inter-arrival time, traffic flow 
rate, burstiness rate and packet length for 21 types of IoT 
devices. Finally, the comparison is done with existing works for 
both stages in term of recall, precision, F1-score, accuracy, 
Mathews Correlation coefficient and confusion matrix. The 
results indicate that multiclass logistic regression in stage 0 and 
gradient boosting in stage 1 performed better than all other 
algorithms while achieving a 99% accuracy and a significant 
MCC of 0.96. Future direction of this work includes 

incorporation of other machine learning techniques such as K-
means clustering along with the classification. 
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