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Abstract: The potential offered by the abundance of sensors, actuators and communications in the1

IoT era is hindered by the limited computational capacity of local nodes. Several key challenges2

should be addressed to optimally and jointly exploit the network, computing, and storage resources,3

guaranteeing at the same time feasibility for time-critical and mission-critical tasks. We propose4

the DRUID-NET framework to take upon these challenges by dynamically distributing resources5

when the demand is rapidly varying. It includes analytic dynamical modelling of the resources,6

offered workload, and networking environment, incorporating phenomena typically met in wireless7

communications and mobile edge computing, together with new estimators of time-varying profiles.8

Building on this framework, we aim to develop novel resource allocation mechanisms that explicitly9

include service differentiation and context-awareness, being able of guaranteeing well-defined10

Quality of Service (QoS) metrics. DRUID-NET goes beyond the state of the art in the design of control11

algorithms by incorporating resource allocation mechanisms to the decision strategy itself. To achieve12

these breakthroughs, we combine tools from Automata and Graph theory, Machine Learning, Modern13

Control Theory and Network Theory. DRUID-NET constitutes the first truly holistic, multidisciplinary14

approach that extends recent, albeit fragmented results from all aforementioned fields, thus bridging15

the gap between efforts of different communities.16

Keywords: Edge Computing; Internet of Things; Mobile Robots; Resource Allocation; Control17

co-design18

1. Introduction19

The Internet of Things (IoT) consists of low-cost efficient sensors, actuators, and computing units20

and provides great benefits to people to synthesize a system of interrelated computing, sensing, and21

communication devices, that facilitates and improves everyday life, in cities and industry. IoT is22

foreseen to reach 500 billion devices that are connected to the Internet by 2030 [1], while the global23

mobile traffic is expected to increase sevenfold by 2021 [2]. Though significant improvements have24

been obtained in terms of hardware advances and processing capabilities at the device level, still in25

most cases, IoT devices (e.g. smart devices, sensors, actuators, mobile agents) cannot meet, and more26

importantly cannot guarantee the required high performance and/or fulfilment of time constraints,27

for time-critical and mission-critical IoT-enabled applications. Thus, offloading computation and28

energy intensive tasks to powerful computing infrastructure for further processing becomes of vital29

importance.30
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The success of the computation offloading, and consequently the performance of IoT-enabled31

applications, depends on many contextual parameters, e.g the user’s mobility, various wireless32

parameters and the resource availability of the computing resources in the data center. Most of33

the modern IoT-enabled applications rely on continuously moving people or mobile agents. Regarding34

the latter, various types of autonomous mobile agents or unmanned vehicles are used. Typical examples35

of these agents are the unmanned aerial vehicles (UAV), which are widely used in several human36

activities in the context of smart city, agriculture, area surveillance, rescue missions and event coverage37

[3]. UAVs can be used individually or in a swarm, and they are equipped with various sensors in order38

to complete a mission or to execute their own tasks, such as trajectory planning and positioning. Their39

limited computing resources and energy reserves do not allow local data processing. Thus, the data40

offloading seems the only viable solution for using massively UAVs in various daily scenarios. Data41

are transmitted through wireless links, i.e., cellular or WiFi, and the quality of the wireless connection42

heavily depends on signal strength, interference, packet dropouts and other parameters related to the43

wireless environment, which must be considered in the offloading decision.44

The computation offloading aims to save time and energy at the end user’s side. Cloud computing45

seems the natural selection for offloading, as it is the prevalent service delivery model nowadays.46

However, the high network delay for sending data over public internet counterbalances the benefits of47

the powerful computing resources that are available at a cloud data center. Accordingly, Multi-Access48

Edge Computing (MEC) [4] and Fog Computing [5] have arisen as promising approaches to overcome49

this obstacle and provide the benefits of cloud computing in the proximity of the end-users. Over50

the last few years, powerful UAVs have been considered as means to provide computing support to51

the end-users by acting as UAV-mounted MEC servers [6]. In that respect the UAV-mounted MEC52

servers in combination with ground MEC servers collectively create a fog computing system [7],53

supporting end-users’ applications’ task offloading. Similarly, the use of clusters of UAV-mounted54

MEC servers are suggested [8] allowing the opportunistic task offloading to the neighboring UAV55

clusters with sufficient computing resources. In such a UAV-assisted networks, computing intensive56

tasks are offloaded and executed in a nearby small-size edge data center, either directly connected with57

a wireless access point, or it is embedded on the UAV itself. The key difference between cloud and edge58

data center is that the latter has finite amount of computing resources, which requires fine-grained59

resource management towards meeting the strict constraints of the deployed time- and mission-critical60

applications.61

1.1. The DRUID-NET Perspective and Contributions62

This article presents the vision and perspective of the DRUID-NET (eDge computing ResoUrce63

allocatIon for Dynamic NETworks) framework, along with a detailed description of its main concepts64

and objectives. While considering the end-user’s mobility and the parameters of the wireless65

connection environment, the DRUID-NET framework aims at developing workload profile holistic66

and modular dynamic performance models of IoT-enabled applications based on the appropriate67

theoretical tools. Furthermore, the article aims to outline the control principles of novel resource68

management systems for this kind of applications. In particular, the key research threads and topics of69

this article are summarized as follows:70

- Workload Profile: The IoT applications generate time-varying traffic in terms of request size and71

number of flows. Additionally, the involved wireless communication between the mobile devices72

and the back-end software components introduces additional uncertainties that considerably73

affect the offloading decision and the resource scheduling at the edge computing infrastructure.74

Contrarily to existing average traffic characteristics, building dynamic traffic profiles and75

prediction mechanisms will enable more accurate, adaptive and successful data offloading76

and resource allocation mechanisms.77

- Performance Modelling: Most of the existing models for describing the performance of78

IoT-enabled applications are empirical and usually focus on a specific performance metric, e.g.,79
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response time, throughput, energy consumption, etc. These models cannot adequately capture80

the dynamic nature of the emerging applications, which in turn leads to either performance81

degradation or resource over-provisioning. On the other hand, the DRUID-NET framework82

proposes formal dynamic multi-input multi-output performance models applicable to various83

IoT applications. This type of models enables the design of novel controllers for finer regulation84

of Quality of Service (QoS) metrics.85

- Resource Allocation: Usually most studies in the literature combine a static performance model86

with solving an optimization problem. However, this approach assumes that the workload does87

not vary significantly, which limits their validity, applicability and exploitability. In contrast88

to these approaches, we envisage to design stabilizing controllers in order to guarantee the89

feasibility of the resource scheduling and the performance requirements.90

- Control co-design The DRUID-NET framework examines specifically the case where the91

application is the controller design and its implementation for dynamic processes. In this92

setting, the performance of the closed-loop system is considered in the overall application93

performance. The control co-design approach aims to design feedback mechanisms achieving94

closed-loop system properties such as reachability, stabilization and other complex specifications,95

and simultaneously design and implement resource allocation algorithms for the dynamic96

network.97

The rest of the article is organized as follows. In Section 2, the current state of the art is presented.98

Section 3 demonstrates the conceptual architecture of the DRUID-NET framework, while Section 499

describes three IoT-enabled use cases where the proposed solution is applicable. Finally, Section 5100

draws the conclusions and future directives of our research.101

2. Related Work & Motivation102

This section provides a thorough yet comprehensive presentation of the most relative studies to the103

DRUID-NET framework, in the recent literature. Aligned with the DRUID-NET objectives, Abdelzaher104

et al. [9] presented five challenges on IoT applications and Edge Computing. This study focused105

mostly on deep learning-based application modeling, optimal offloading, closed loop guarantees and106

collaborative offloading. Towards these directions, the related work is categorized under three major107

classes; (i) IoT workload profile, (ii) performance modelling and resource allocation and (iii) control108

co-design.109

2.1. IoT Workload profile110

The estimation of the workload and communication patterns in IoT-Fog/Edge networks, has only111

been little explored due the high heterogeneity of co-existing devices. Nevertheless, there is no doubt112

that the proper estimation of the offered workload and communication patterns could lead to a more113

efficient utilisation of the underlying infrastructure.114

Authors in [10] considered a two-tier network architecture consisting of shallow and deep115

cloudlets, and explored the benefits of hierarchical capacity provisioning based on queuing analysis.116

Although shown to be efficient in very specific cases, this approach cannot be generalized in117

principle. Osmotic Computing [11] relied on the deployment of lightweight microservices on118

resource-constrained IoT platforms at the network edge, coupled with more complex microservices119

running on large-scale datacenters. MobiQoR [12] introduced a new metric, Quality of Results, to120

validate the quality of edge resource deployment. Nevertheless, none of these approaches attempted to121

estimate the IoT workload, which in turn could significantly enhance the corresponding deployments.122

Authors in [13] and subsequently in [14] analysed the resource allocation of a three-layer infrastructure123

(IoT, Edge, Cloud) under dynamic network conditions. However, they took into consideration the124

dynamic opt-in and out of IoT devices into the network, while ignoring their instantaneous workload125

generation. To the best of our knowledge, the only attempts to estimate workload are referring to the126

cloud utilization [15,16], and as such they did not capture the locality of the heterogeneous IoT traffics.127
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A promising approach to derive workload profile is to use machine learning techniques. Applying128

deep or machine learning techniques for IoT applications is not new [17], but most of the time they are129

centralized and do not need any adaptation to fit specific IoT devices limitations. In DRUID-NET, we130

will rely on existing estimation methods, such as [18], to estimate the workload of hardware constrained131

devices. In existing works the focus is placed on one specific resource each time (e.g. energy, memory,132

computing, etc) [19]. The DRUID-NET framework aims at extending them to multiple resources, while133

combining these approaches with predictive methods, which have only been slightly explored for134

IoT due to resource limitations. So far, methods such as ARIMA [20], deadreckonning [21], Kalman135

filters [22], Thompson sampling [23] or Bayesian approaches [24] have mainly been investigated for136

navigation and position prediction [20], data reduction[24], link prediction [25] or medium occupation137

[23]. Our aim is to provide a unique distributed and adaptive multi-resource estimation and prediction138

suitable for IoT devices. The DRUID-NET goal is to derive some communication patterns, clearly139

defined in time and size, towards assessing the need in edge resources in time and space. This140

edge-resource sizing combined with performance modeling, controlled mobility of edge-resource and141

resource allocation, will enable the adaptive deployment of sufficient resources, on demand and in an142

efficient manner.143

2.2. Performance modeling and resource allocation in Cloud and Edge Computing144

Resource allocation has become one of the most important open research problems in Cloud and145

Edge computing and IoT. In cloud computing environment, the computing resources are assumed146

to be infinite, thus, static or empirical models combined with coarse resource scheduling techniques147

have been shown sufficient to provide high performance through over-provisioning. However,148

these approaches are neither optimal nor able to provide QoS guarantees. Regarding application’s149

performance modeling, the empirical or fixed models considered already known request sizes and150

execution times, which are not only hardware-specific, but generally very difficult to be precisely151

computed. Furthermore, many studies relied on queuing models [26], e.g. G/G/1 or G/G/n, which152

are reliable only for steady state. It is obvious that this kind of modelling cannot capture transient153

phenomena due to dynamic workload demand. With this capacity, System Theory [27] can provide154

dynamic modeling methodologies, appropriate for Cloud/IoT-based applications. The interesting155

reader may refer to survey [28] for an extended analysis of control theoretic approaches on performance156

modeling and cloud elasticity. Close to DRUID-NET concepts, Dechouniotis et al. [29] proposed Linear157

Parameter Varying (LPV) modelling of cloud applications combined with set-theoretic controllers to158

guarantee feasible solution of the elasticity in cloud data centers, while Leontiou et al. [30] derived159

fuzzy Takaki-Sugeno models and designed robust controllers to address simultaneously the problems160

of vertical and horizontal scaling, and load balancing with stability guarantee.161

Contrarily to cloud computing, the resources of edge computing are rather limited, thus, static162

allocation techniques cannot achieve optimal resource utilization. Furthermore, modern time- and163

mission-critical IoT-enabled applications [31,32] have strict performance requirements that only164

dynamic modeling and intelligent allocation algorithms can guarantee. Similarly to cloud, in the edge165

computing context, most of relative studies proposed static models alongside with the optimization166

of a single performance criterion, e.g. energy consumption or response time. Towards this direction,167

Sonmez et al. [33] proposed a two-stage fuzzy mechanism for offloading requests to edge and168

cloud infrastructure. The set of fuzzy rules are empirically decided and the VM (Virtual Machine)169

utilization modeling is threshold-based, which is applicable only for specific types of IoT applications.170

Queec [34] formulates the problem of scheduling multi-user tasks to multiple edge nodes as an171

optimization problem which minimizes the overall offloading latency of all tasks. Jalali et al. [35]172

analysed fixed flow-based and time-based energy consumption models and they presented a detailed173

comparison on energy consumption between cloud and edge computing systems under various174

network settings. Lyu et al. [36] presented a collaborative Cloud-MEC-IoT architecture and proposed175

a request modelling scheme and an admission control framework to address the scalability problem of176
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these platforms. Although the authors considered heterogeneous edge resources, the computation177

model was not dynamic. The authors of [37] addressed both the problems of network selection and178

service placement for MEC infrastructure. Towards the reduction of the complexity of the general179

problem, they decomposed it into a series of sub-problems and solved them in an iterative fashion.180

However, the proposed performance model focused only on network related parameters ignoring the181

processing time of the application.182

In the 5G era, Network Functions Virtualization (NFV) and Software Defined Networks (SDN)183

play key role for the realization of many type of verticals, which are comprised by several IoT184

applications. In this context, virtualized and isolated Service Chains (SCs) comprised of a series of185

Virtualized Network Functions (VNFs) implemented as VMs need to be deployed in the available MEC186

infrastructure to offer networking services to the IoT traffic. Normally, the objective of this kind of187

resource allocation mechanism aims to minimize the overall deployment cost (e.g. the computational188

and communication resources that a SC needs in order to be provisioned) [38]. Another common189

approach is to minimize the overall delay, since several IoT applications are characterized as mission190

critical and delay sensitive. Thus, a valid approach is to utilize the MEC resources that are closer to the191

IoT devices [39]. An alternative approach to minimize the delay is to create resource clusters inside the192

MEC infrastructure, where the various requested SCs can be deployed [40]. Minimizing the number193

of clusters and appropriately positioning the VNFs can lead to a reduction of the communication194

delay. Efforts have also been dedicated to optimize the energy consumption. The authors of [41]195

modelled the energy dissipation of the resources in the IoT and MEC infrastructures and constructed a196

Linear Programming algorithm to carefully select the resources to place the SCs. Another objective197

focuses on the optimal allocation and scheduling of the available edge resources. This objective can198

be translated into either: a) minimizing the overall resource usage, to enable multiple heterogeneous199

SCs, servicing heterogeneous IoT applications, to co-exist in the MEC layer [42], or b) minimizing200

the resource idleness of the infrastructure [43]. Load balancing can also be applied by minimizing201

the maximum link utilization and reducing the bandwidth consumption [44]. This can be achieved202

by adopting appropriate queuing and QoS modeling during the optimization problem to minimize203

the resource utilization [45]. Even though all the above solutions target valid and open challenges204

of resource allocation in the IoT/MEC, they only propose static approaches failing to provide a205

holistic mechanism that takes into consideration a multi-objective and dynamic solution. Following206

the performance modeling and control design principles of [9,46], DRUID-NET aspires to provide207

multi-variable dynamic models and design modern control methodologies that ensure the desired208

user’s performance requirements and optimize the utilization objectives of the infrastructure provider209

simultaneously.210

2.3. Control-theoretic resource allocation and control co-design211

In control theory, the effect of a shared, imperfect communication network between the controller212

and the sensor/actuator network has been studied extensively for almost three decades, generating the213

separate branch of Networked Control Systems (NCS), [47,48]. NCS suffer from many non-idealities.214

For instance, networked induced delays or, even worse, packet dropouts occur, as the information215

from the sensor to the controller or from the controller to actuator(s) can be lost in a time interval.216

Moreover, due to the limited energy available at decentralized nodes, bandwidth can be low, so that the217

effect of quantization in the communication channels may not be neglected. Also, switching or hybrid218

phenomena may occur due to the asynchrony between disconnected agents, or due to event-triggered219

strategies. Finally, the computational problem, to be performed at the nodes, may be part of a global220

optimization problem, which is split into decentralized subtasks.221

Several methods have addressed these non-idealities separately. Time delays, for instance, have222

been tackled utilizing perturbation theory, Lyapunov stability theory and hybrid systems analysis,223

but also probabilistic methods involving Markov chains and stochastic automata [49]. Quantization224

problems have led to a rich literature, where the controllability of a plant subject to quantized control225
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is ruled by the so-called entropy of the system [50]. From the hybrid control point of view, researchers226

from real time computing have dealt with the schedulability problem of distributed control settings,227

leading to the design of several protocols for a stable closed-loop behaviour, [51–53]. Decentralised228

computation/optimization has been another major topic of research in Systems and Control [54]. Here,229

though the state of the art is rich, the interaction of this constraint with others is not well understood230

and studied. Let us note however that the consensus problem has been deeply studied, in many231

settings, e.g. quantized communications [55].232

Additionally to the stochastic results [56], recent theoretical work on the controllability and233

observability properties of the NCS [57] has shown that a more refined modelling of the communication234

network allows the proper definition and verification of such properties, thus adding new tools to235

the NCS community. Furthermore, proof-of-concept work has shown that under a new modeling236

framework for hybrid systems and specifically constrained switching systems [58], the control237

performance can be directly associated with the network quality [59].238

Rather than designing the control and communication protocol in two steps, co-design methods239

aim to synthesize simultaneously controllers and the communication patterns (sampling, delays,240

scheduling protocols). Applied only to networked control systems with constrained communication241

resources so far, co-design methods have been extensively studied the last decade [60–63]. Perhaps the242

most relevant breakthrough in this area is the emergence of event-triggered and self-triggered control243

mechanisms, that allow asynchronous sampling, thus reducing the network traffic, while at the same244

time behaving sub-optimally [64–66].245

Nevertheless, there is limited work on the co-design of controllers taking into account246

simultaneously more than one phenomena (schedulability, network utilization, edge resource247

utilization, energy consumption etc.) caused by the distribution of computing and communication248

resources. It is anticipated that the research developments in the next decades, will allow to encapsulate,249

compare, and subsequently alter the impact of the several non-idealities, and this in turn will have a250

significant impact on future control applications, where resources must be used parsimoniously, in251

balance with the constraints and the overall considered objective. This will require and motivate new252

paradigms in Systems and Controls, where multi-objective optimization, model-free (data-driven)253

approaches, approximate optimality (however with firm safety guarantees), reconfigurability, and254

resilience take a central place.255

3. DRUID-NET Conceptual Architecture256

Figure 1 illustrates a high-level overview of the overall DRUID-NET framework. The architecture257

follows the NFV/SDN paradigm and separates the flow of information into control and data planes.258

At the lowest layer, the IoT applications are deployed, and the generated workload (data flow) can be259

offloaded for further processing at the upper level of Edge Computing. In this layer, any component of260

the application is provided as a virtualized service. As it is shown in the figure, a virtualized service261

corresponds either to IoT specific functionalities, e.g. path planning and image recognition, or control262

components such as learning algorithms or optimization solvers. The modelling and control framework263

collects information (control flow) about the status of the computing and network infrastructure at the264

edge computing level in order to create workload-resource profiles, update the performance model265

for every application, and realize the feedback control mechanism for the resource allocation, while266

simultaneously implementing a resource-aware control strategy for the cyber-physical system to be267

controlled (control flow). This holistic approach allows the application’s dynamical modelling taking268

various contextual information into account. Furthermore, the controller co-design treats the resource269

allocation algorithms as application components in the virtualized services. Each major component of270

the modelling and control framework is described in more detail in the following subsections.271
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Figure 1. Conceptual Architecture

3.1. IoT Workload Profiling272

As mentioned before, a major challenge for solving the resource allocation problem in edge273

computing settings is to predict the time-varying characteristics of the workload/traffic, as different274

traffic flows and volatile conditions can influence significantly the resource allocation mechanism.275

Aspects such as the load generated from an IoT device, latency specifications, the transmitting data276

frequency, the wireless protocol, the mobility of the devices, and the number of devices associated277

with the IoT gateway, change the amount of resources requested from the edge, while also influencing278

the scheduling process. Till now, only generic traffic models have been proposed to estimate the traffic279

aggregated at the edge layer, while stationary IoT devices are assumed, leading to a static rate model,280

which however limits its effectiveness and applicability in real scenarios.281

Going a step beyond from the pertinent literature, which only considers average and general282

traffic characteristics of the IoT applications (e.g. Brownian motion as one-fits-all model), DRUID-NET283

framework aims to differentiate and categorize the requirements of different IoT applications using284

appropriate data analytic and mathematical models. In particular, we classify and categorize the IoT285

applications by leveraging the transmission patterns, the spatial and temporal correlation of the traffic,286

as well as other traffic related characteristics such as the frame size distribution, and the burstiness of287

the traffic of the IoT applications. The novelty of this approach is that we create prediction mechanisms288

to treat the dynamics and uncertainty in the corresponding traffic profiles. Each predictive mechanism289

targets specific categories of IoT applications with similar requirements and characteristics to define290

the type, the size, as well as the time and the location of the requested resources. Furthermore, with this291

approach we can dispose the erroneous assumption that specific tasks are associated with static and292

pre-specified resource footprints. In contrast, we replace this analogy with an opportunistic association293
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between the requested resources and the IoT traffic dynamicity, thus introducing a holistic mechanism294

inspired by data analytics, and traffic analysis methods.295

3.1.1. IoT applications classification296

A first classification of the IoT applications can be produced by simply answering yes or no, to297

questions regarding the involved "things"/devices. Indicative such questions can be identified as298

follows: i) Are the devices heterogeneous? ii) Are they battery-powered? iii) Are they sending data299

with high or low frequency? iv) Are they data rich (e.g. multiple number of sensor measurements)? v)300

Are the devices mobile?301

The answer to such questions will help us to create a first clustering of the IoT applications. These302

clusters will contain IoT applications with similar device characteristics and behavior. Nonetheless,303

this first-phase categorization does not necessarily mean that the IoT applications belonging in the304

same cluster will present the same exactly resource requirements at the Edge. The reason is that305

different network access technologies can significantly affect the network requirements of the IoT306

applications. For example, different access technologies (e.g. LoRaWAN, Wi-Fi, IEEE 802.15.4, cellular,307

etc.) have different characteristics in terms of packet length, transmission range supported, MAC308

mechanisms, topological characteristics of the associated IoT devices (e.g. star, mesh, peer-to-peer),309

number of device connections supported, etc.310

Thus, DRUID-NET takes into consideration both the functional and network requirements of the311

IoT applications in order to provide a complete and realistic IoT application classification.312

3.1.2. IoT applications workload prediction313

The above categorization will help us to extract the workload generated from each cluster of314

applications in terms of bandwidth, latency and other important Key performance Indicators (KPIs)315

during the offloading of IoT tasks to the Edge. Specifically, through this approach we can propose316

appropriate mathematical models to simulate the traffic behavior of the various IoT applications.317

Nonetheless, even with this modeling a lot of ambiguity will exist. The reason is that IoT access318

networks include several uncertainties, usually being wireless, lossy, and unreliable. Hence, the goal319

of DRUID-NET is not only to categorise and classify IoT applications based on their traffic profiling,320

but to also apply network analytics to make the communication as deterministic as possible.321

Our goal is to replace the so far average estimates of the IoT applications with instantaneous and322

accurate transmission metrics. To this end, appropriate machine learning algorithms (i.e. Thompson,323

ARMA, Bayesian) need to be integrated in the traffic profiling in order to learn and predict the324

network conditions between the IoT and the Edge. This can be decisive in the performance of the325

subsequent resource allocation at the Edge. The Edge controller will be able to adapt to and predict326

the changing workload arriving at the Edge infrastructure, creating a holistic and realistic resource327

allocation approach.328

3.2. Performance Modelling329

The available resource models are usually single-input single-output. Energy or response time330

are typically the model’s outputs, while computing resources (e.g. CPU, memory), incoming requests,331

and network bandwidth are the control variables. In most of the current studies, the relation between332

input and output is fixed and empirically derived. For example, the processing time of a request is333

proportional to its file size and inversely proportional of the service rate measured in CPU cycles or334

millions of instructions per second. Although this assumption is reasonable, the actual processing335

time depends on several time-varying parameters, which are not easily measured. Furthermore, in336

combination with static resource allocation mechanisms, the offloading decision performs adequately337

only for specific operating conditions, being unable to guarantee stability under fluctuating workload338

and heterogeneous IoT communication infrastructure.339
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Contrary to current approaches that provide empirical static models, we aim to develop formal,340

realistic and dynamic traffic and resource models applicable to emulate the generated traffic from341

various IoT applications. For this purpose, DRUID-NET adopts hybrid dynamical models [67] that342

have the capacity to include several performance metrics (i.e. state variables) and resources as control343

parameters (input variables). This type of modelling takes into account in a single formulation344

the various contributions of the diverse objectives and constraints to the performance/cost. This345

framework moreover allows to discover the tradeoffs between accuracy, complexity of representation346

and real-time feasibility of the resource allocation strategy. Furthermore, the chosen framework347

will be capable of capturing structural changes interpreted as discrete jumps in the dynamics, e.g.,348

user mobility, change in wireless protocols and topology, addition/removal of edge servers. Finally,349

alongside with the dynamic models, the DRUID-NET framework aims to identify the uncertainties of350

these models and quantify their boundaries in order to facilitate the design of the respective control351

laws.352

3.3. Resource Allocation353

The workload profile estimator and the dynamic model of the resources and overall status of354

the network/servers, provides the foundation upon which the resource allocation algorithm will be355

developed. Specifically, the objective is to develop a joint communication, computing and storing356

virtualization paradigm that is updated and adapted dynamically. For this purpose, we consider357

the problem of simultaneously (i) allocating storage, computing and communication resources, (ii)358

modifying network topology/ protocol, and (iii) structuring the edge computing data centres (such359

as VMs distribution). Two distinct approaches relating to static and dynamic resource allocation, are360

considered.361

3.3.1. Static resource allocation362

In this approach we do not take into account the dynamic nature of the processes under study,363

however, we consider the full resource allocation problem. The method is oriented towards solving364

multi-objective optimization problems fast, that will in turn provide the optimal operating point for365

the communication network, and the computing and storage allocation in the edge/cloud servers.366

Our goal is to describe the complex interrelations between the aforementioned resources in an analytic367

manner, merging available models, e.g., from queuing theory and Markov models. Next, we plan to368

solve the optimization problems using mixed-integer, linear, and nonlinear programming. Since the369

complexity of these problems does not allow often exact real-time solutions, our intention is to propose370

approximate solution algorithms that provide guarantees of the level of suboptimality of the identified371

solution. Additionally, we will employ machine learning algorithms to relax the complexity of these372

highly nonlinear/nonconvex problems so they can be solved in real-time, thus respecting hard time373

constraints. This approach will focus on problems involving complex specifications and mostly static374

models, aiming to maximize the QoS delivered.375

3.3.2. Dynamic resource allocation376

In this approach, the DRUID-NET framework proposes dynamic control-theoretic resource377

allocation mechanisms. Utilising the models established by capturing the performance metrics378

dynamics in a hybrid dynamical system, our goal is to follow control-theoretic approaches that379

provide formal guarantees on important properties describing the resource allocation problem. For380

example, a main objective is to provide guarantees of the speed of convergence of the performance381

metrics to a pre-determined range, defined by translating the QoS requirements to mathematical382

statements. Moreover, our goal is to provide decision mechanisms that allow structural changes in383

some cases (for example turning on and off edge servers in a cluster, changing the topology in a384

communication network), together with continuous strategies (such as CPU and memory utilisation in385

a server). The natural, main challenge in this approach is the scalability of the decision algorithm, which386
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will be tackled by proposing smart allocation strategies that allow tradeoffs between performance and387

real-time implementation. Another challenge is to establish resource allocation mechanisms using only388

partial information, which is the most realistic scenario. This issue will be addressed by proposing389

distributed control mechanisms that take continuously into account local information and receive only390

intermittently information about the states of the whole system.391

3.4. Co-design of controllers392

As we have mentioned before, in the broad field of Systems and Control, several different393

paradigms have emerged in the last decades, to deal with the control of IoT-enabled cyber-physical394

systems. Indicative examples include hybrid behaviour, quantized control, varying delays,395

safety-criticality, nonlinear control, etc. Although these challenges are typically met together in396

IoT environments, the research activities have led to disconnected communities, and likewise very397

specific and custom control techniques, that limit their implementability in a holistic framework.398

In a real-life IoT control application, these non-idealities take place all together. We argue that the399

different paradigms separately introduced for each of these non-idealities are hard to reconcile, thus400

the DRUID-NET framework is devoted to deploying the theoretical results in actual applications.401

Modern IoT applications need controllers that address a mixture of these undesired phenomena.402

Our goal it to establish a formal decision mechanism that will be able to change the provisioning403

of the resources in real time, adapt its control objective to the available bandwidth, weigh the cost404

of communication with respect to the advantage of involving decentralized agents and eventually405

address a multitude of practical challenges appearing in networked, resource-constrained control406

applications. Such a new generation of controllers will be made possible by the merging of two sets of407

hybrid models, namely a) the performance model having as internal variables performance metrics of408

the infrastructure and as inputs the resource distribution and utilization, and b) the process model409

(having, for example, variables related to position, orientation, velocity and acceleration of mobile410

agents, lighting conditions, room temperature, mode of operation of sensors etc). To provide an411

example of the challenges that will be met in this setting, let us raise the following question: what412

do traditional data-rate theorems from quantized control (see, e.g. [68]) become in an environment413

with packet losses and varying delays, and varying computational resources? Another important line414

of research that will be necessary to follow in a time-varying resources setting is to categorize and415

model the complexity of the control algorithms. Allowing their dynamic adjustment will eventually416

provide the coupling between the process/application to be controlled and the control algorithm417

resource provisioning. In turn, this will enable (i) the establishment of real-time control mechanisms418

with formal guarantees for the closed-loop system, and (ii) the optimal utilisation of resources, either419

in the network or the edge.420

4. IoT-enabled applications421

The proposed architecture is generic enough offering a holistic paradigm, while its estimation,422

modeling and control methodologies are applicable in several categories of IoT applications, such423

as the ones based on mobile agents (e.g., UAVs) or designed for crowded smart areas or emergency424

scenarios. The following subsections demonstrate three representative use cases of the DRUID-NET425

framework.426

4.1. Human-Robot Collaboration427

Collaborative robotics is a prerequisite for Industry 4.0, especially in the Industrial Internet of428

Things setting. The current trend is to produce and program robots that have the capability to work429

together, or in close proximity, to humans in a shared environment. Removing a physical (or virtual)430

cage from the robot brings many challenges, the most critical of which is guaranteeing safety / avoiding431

collision, without leading to an unsatisfactory performance, e.g., the robot working in a non-acceptable432

speed. The setting can be extended to the case where there are many robotic agents and humans433
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Figure 2. Human-Robot Collaboration

sharing the factory floor, or any other indoor or outdoor environment, e.g., a logistics warehouse, an434

airport, swarm UAVs networks etc. In all aforementioned cases, similar challenges appear, namely: (i)435

intermittent and noisy measurements of the position of the agents either by static sensors or sensors436

mounted on the robots, (ii) faulty wireless communication networks, (iii) stringent safety specifications437

as humans and robots move freely in the same environment, (iv) time-critical specifications. These438

challenges become harder when the computing/storing/communication resources are limited, or not439

always available to a control application, which is the typical case. Thus far, a few approaches, aligned440

with the ones appearing in the cyber-physical systems control problems, take explicitly into account a441

part of these challenges, e.g., [69]. Controllers, which are co-designed with the resource allocation and442

computation offloading mechanisms, can be used for human-robot collaboration in the IoT-enabled443

environment or for real-time, large scale coordination of mobile robots. It should be noted that an444

additional control challenge in this case, additional to the presence of constraints, is the complex445

temporal specifications that need to be satisfied. Currently, the control objective has moved away from446

just ensuring stability or tracking for a prespecified set of reference trajectories, to satisfying statements,447

for example “robot A and B should collaborate towards a task X and eventually return to their initial448

positions if these positions are not occupied”, as shown in Figure 2. These control applications are often449

time-critical as well as safety-critical, thus, a very careful co-design procedure should be developed for450

the controller that leads to formal guarantees without requiring many, possibly idle, resources.451

This scenario, enables and is enabled by, a combination of almost all components of the452

DRUID-NET framework, namely workload and resource estimation, and control co-design of a453

set of control applications in a platform where resources are shared and their availability is volatile.454



Version April 12, 2020 submitted to Sensors 12 of 18

4.2. Rapid Resource Deployment for Physical Disaster Scenarios455

In the case of a physical disaster, the fixed communication infrastructure could be destroyed or456

unavailable due to high workload demand. Furthermore, for rescue operations it could be critical to457

deploy additional on-demand computing and network resources at the proper place and time, in order458

to alleviate any remaining network infrastructure and collect data from remaining communicating459

devices such as mobile phones or sensors, towards helping to locate and rescue survivors. Mobile460

agents, especially UAVs, are suitable for this kind of missions and can provide additional edge461

resources capable of processing the data at low latency and organizing the rescue operation. In order462

to serve the survivors devices as much as possible, there is a need to predict the kind and amount of463

resources these devices will request and the location of these resources. Some UAV-mounted edge464

resources may need to be deployed sporadically and temporarily at different locations based on IoT465

devices needs and mobility. Thus, there is a need to anticipate the deployment of edge services and466

to estimate the time they will be required at a given place to decide whether it is worth deploying467

durable edge resources, or instead mobile temporary resources could suffice. In this latter case, the468

estimation of the location and quantity of required resources should be anticipated to allow their469

timely deployment. The deployment of edge resources will be such that a maximum of IoT devices470

can be served within the required latency, either directly or through multi-hop communications. Direct471

communications will be favored for devices with very-low latency requirements, while multi-hop472

communications could be used for weaker latency requirements non-necessary communications. The473

trajectory of distributed UAV should be consciously planned accordingly, taking in consideration the474

time restrictions (robots should be deployed at the proper place before we need them).475

Figure 3 illustrates the operation of the proposed framework under a physical disaster scenario,476

such as for example the occurrence of a gas leakage in a large factory. In this case, swarms of mobile477

robots will be deployed in order to find victims or survivors that require immediate medical assistance.478

Two types of mobile robots can be deployed, namely, i) Unmanned ground vehicles (UGVs) and ii)479

UAVs. UGVs will cover the ground area (x,y dimensions), while UaVs can provide a certain altitude480

coverage (z dimension) or coverage in non accessible areas by the UGVs (e.g. upper floors, atriums,481

etc.). Normally, we expect to find more obstacles in the ground area (e.g. offices, machines, shelfs),482

which can be translated in a higher number of UGVs in comparison with the UAVs (a ratio of 2:1), as483

shown in Figure 3. The goal of the interconnected UAVs is to locate living or dead persons, while at the484

same time send footage of the interior of the factory in order to create a 3D visualization of the area. In485

this manner, the users of the application (e.g. fire brigade) can immediately detect persons in need and486

send help to the corresponding location, eliminating the risk of long exposure to harmful gas for the487

rescuers. For the path planning of the mobile agents, the robots will be capable of detecting the Wi-Fi or488

LTE preamble and accordingly plan the route towards the source of the signal. The notion behind this489

behavior is that normally people have in close vicinity their mobile phones or other wireless devices490

(e.g. smart watches). This will facilitate the path planning and the pointless roaming of the UAVs in491

space. In order to prioritize the traffic and eliminate the impact of poor wireless communication, the492

swarm of robots can intensify the load of images/video and increase their quality only in areas with493

high probability of detecting a person, and send this traffic at the Edge for further processing. UGVs494

can approach the victims and sense if they are living or unconscious (e.g. detect eye movement, detect495

sound, etc.). When a UGV finds a survivor it can communicate with the UAV of the swarm near by,496

which in turn can lower its altitude close to the position of the person in need and drop an oxygen497

mask, until help arrives.498

In this case, using swarms of mobile robots will assist in eliminating the non-essential499

communications. Combining service differentiation and smart data offloading to UAVs, there will500

be reduction of any unnecessary communication between users and overhead due to extensive501

signaling. Since the number of available robots may still be inadequate to serve all ground services,502

the prioritization of the applications, flows and devices is of paramount importance for the success503

of critical missions. Under these circumstances, the priority will be given to the areas with many504
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Figure 3. Rapid Resource Development for Physical Disasters

victims or of major importance for the completion of the mission, thus, the available swarms of mobile505

robots should be distributed accordingly. Even in the case of homogeneous UGVs and UAVs with506

identical computing and networking capabilities, the optimal allocation of UAVs or UGVs formulates507

a dynamic optimisation problem, which depends on the size of the damaged area, the communication508

ranges of both UGVs and UAVs, the flying altitude of UAVs, the propagation conditions, the data509

communication requirements (amount of data, frequency of collection, etc) and the number and type of510

devices to serve. For example, if the victims are equally spread in different locations, the robot swarms511

would be equally scattered to deploy their resources in these areas so that the maximum number of512

devices would be served directly. On the other hand, the mobile robots will be driven to the most513

damaged area in order to serve the required network traffic.514

This scenario illustrates the use and combination of the different control components of the515

DRUID-NET framework, and in particular: 1) workload estimation in quantity, time and space, 2)516

resource allocation (tasks assignments to UAV and/or robots) and 3) path trajectory.517

4.3. Mobility-aware Edge Computing518

Most of the modern smart city applications rely on mobile end-devices of continuously moving519

humans. Thus, the user’s mobility is a dominant parameter of IoT systems. As shown in Figure 4, in the520

case of an urban touristic areas, e.g., museums and squares, the visitors collect information about Points521

of Interests (PoIs) (i.e., exhibits or social events) using their mobile devices. For example, leveraging522

the augmented or virtual reality technologies, they can retrieve media-enriched information about523

the surrounding PoIs. However, it is prohibited for the mobile end-devices with limited resources to524

run this type of applications locally. Thus, the edge computing infrastructure is essential to host the525

smart applications and meet the user’s QoS requirements. Additionally, in crowded touristic areas, the526
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Figure 4. Mobility-Aware Edge Computing

number of visitors varies significantly during short-term (i.e. a day) or long-term periods (summer or527

winter), therefore, an accurate prediction methodology is important for optimal resource scheduling.528

Moreover, the offloading decision should be based on both the user’s transmission capability and529

the availability of edge resources. With this capacity, in order to maximize the admittance of users,530

the main features of the overall generated traffic should be extracted alongside with patterns of the531

user’s mobility. Then, utilizing the dynamic models, effective controllers can be designed towards the532

horizontal and vertical scaling of resources and the simultaneous guarantee of any QoS and Quality of533

Experiment (QoE) requirements.534

This use case illustrates the necessity and the collaboration of the involved components of the535

DRUID-NET framework. Particularly, workload estimation, dynamic performance modeling and536

resource allocation components interact to meet the respective requirements and optimize the resource537

utilization under varying workload conditions.538

5. Conclusions539

This article presents the most important challenges of IoT-enabled applications, along with540

the perspective and the basic concepts and objectives of the novel DRUID-NET framework. The541

corresponding components of the DRUID-NET framework are carefully designed to address several542

emerging challenges at any level of the IoT/Edge/Cloud system, stemming from mobile end-devices543

up to powerful cloud data servers.544

In particular, the workload estimation aims to create a profile of IoT applications that includes545

features of the generated data, parameters of the wireless connection and patterns of the user’s mobility.546

The performance modeling components identify the multi-input multi-output dynamical systems that547

capture the dynamic operation of the applications, and are utilized to design the resource allocation548

and the offloading decision strategies. The resource allocation component is in turn responsible for549

deciding any control action at any level of the hierarchical system. Depending on the objectives of550

the controller, the resource allocation can be either static or dynamic, providing guarantees on QoS551
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metrics, e.g. response time or energy consumption, and system properties, such as stability. Finally, the552

co-design of the controllers enables the binding between the IoT application and the resource control553

algorithm in order to provide guarantees for the closed-loop system.554

The DRUID-NET framework aspires to verify its modular architecture and components through555

different IoT scenarios. These use cases are carefully selected in order to cover all main challenging556

and emerging aspects of the IoT applications and Edge computing paradigm.557
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